Quiescent cells: A natural way to resist chemotherapy
S.A. Menchón and
C.A. Condat
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 20, 3354-3361
Abstract:
Most chemotherapeutic treatments use drugs that target proliferating cancer cells. Therefore, they do not affect quiescent cells which are naturally resistant. Surviving cancer cells can reactivate their cell cycles in the intervals between doses, becoming proliferative again and thus restarting tumor growth. In this work, we present a mathematical model to study the impact of quiescent cells on chemotherapy effectiveness. Our simulations show that, although tumor growth is delayed after the beginning of each dose, the resistance of quiescent cells is enough to reactivate it due to accelerated repopulation, eventually causing therapy failure even in the absence of acquired resistance.
Keywords: Mathematical models; Tumor growth; Chemotherapy; Hypothetical therapy; Minimum number of assumptions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111003670
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:20:p:3354-3361
DOI: 10.1016/j.physa.2011.05.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().