Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index
Wen-Jie Xie and
Wei-Xing Zhou
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 20, 3592-3601
Abstract:
Nonlinear time series analysis aims at understanding the dynamics of stochastic or chaotic processes. In recent years, quite a few methods have been proposed to transform a single time series to a complex network so that the dynamics of the process can be understood by investigating the topological properties of the network. We study the topological properties of horizontal visibility graphs constructed from fractional Brownian motions with different Hurst indexes H∈(0,1). Special attention has been paid to the impact of the Hurst index on topological properties. It is found that the clustering coefficient C decreases when H increases. We also found that the mean length L of the shortest paths increases exponentially with H for fixed length N of the original time series. In addition, L increases linearly with respect to N when H is close to 1 and in a logarithmic form when H is close to 0. Although the occurrence of different motifs changes with H, the motif rank pattern remains unchanged for different H. Adopting the node-covering box-counting method, the horizontal visibility graphs are found to be fractals and the fractal dimension dB decreases with H. Furthermore, the Pearson coefficients of the networks are positive and the degree–degree correlations increase with degree, which indicate that the horizontal visibility graphs are assortative. With the increase of H, the Pearson coefficient decreases first and then increases, in which the turning point is around H=0.6. The presence of both fractality and assortativity in the horizontal visibility graphs converted from fractional Brownian motions is different from many cases where fractal networks are usually disassortative.
Keywords: Horizontal visibility graph; Fractional Brownian motion; Dynamics; Fractality; Mixing pattern (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111003141
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:20:p:3592-3601
DOI: 10.1016/j.physa.2011.04.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().