Detection of avoided crossings by fidelity
Patrick Plötz,
Michael Lubasch and
Sandro Wimberger
Physica A: Statistical Mechanics and its Applications, 2011, vol. 390, issue 7, 1363-1369
Abstract:
The fidelity, defined as overlap of eigenstates of two slightly different Hamiltonians, is proposed as an efficient detector of avoided crossings in the energy spectrum. This new application of fidelity is motivated for model systems, and its value for analyzing complex quantum spectra is underlined by applying it to a random matrix model and a tilted Bose–Hubbard system.
Keywords: Avoided crossings; Fidelity; Quantum chaos; Complex systems (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437110010496
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:390:y:2011:i:7:p:1363-1369
DOI: 10.1016/j.physa.2010.12.017
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().