EconPapers    
Economics at your fingertips  
 

Levels of complexity in turbulent time series for weakly and high Reynolds number

F. Shayeganfar

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 11, 3151-3158

Abstract: We use the detrended fluctuation analysis (DFA), the detrended cross correlation analysis (DCCA) and the magnitude and sign decomposition analysis to study the fluctuations in the turbulent time series and to probe long-term nonlinear levels of complexity in weakly and high turbulent flow. The DFA analysis indicate that there is a time scaling region in the fluctuation function, segregating regimes with different scaling exponents. We discuss that this time scaling region is related to inertial range in turbulent flows. The DCCA exponent implies the presence of power-law cross correlations. In addition, we conclude its multifractality for high Reynold’s number in inertial range. Further, we find that turbulent time series exhibit complex features by magnitude and sign scaling exponents.

Keywords: Detrended fluctuation analysis; Magnitude; Sign; Time series (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112000507
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:11:p:3151-3158

DOI: 10.1016/j.physa.2012.01.024

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:11:p:3151-3158