Geometry of deformed exponential families: Invariant, dually-flat and conformal geometries
Shun-ichi Amari,
Atsumi Ohara and
Hiroshi Matsuzoe
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 18, 4308-4319
Abstract:
An information-geometrical foundation is established for the deformed exponential families of probability distributions. Two different types of geometrical structures, an invariant geometry and a flat geometry, are given to a manifold of a deformed exponential family. The two different geometries provide respective quantities such as deformed free energies, entropies and divergences. The class belonging to both the invariant and flat geometries at the same time consists of exponential and mixture families. Theq-families are characterized from the viewpoint of the invariant and flat geometries. The q-exponential family is a unique class that has the invariant and flat geometries in the extended class of positive measures. Furthermore, it is the only class of which the Riemannian metric is conformally connected with the invariant Fisher metric.
Keywords: Generalized entropies; Deformed exponential families; Information geometry; Invariance principle; Conformal transformation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711200310X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:18:p:4308-4319
DOI: 10.1016/j.physa.2012.04.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().