Dynamics of end-to-end loop formation for an isolated chain in viscoelastic fluid
Rajarshi Chakrabarti
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5326-5331
Abstract:
We theoretically investigate the looping dynamics of a linear chain immersed in a viscoelastic fluid. The dynamics of the chain is governed by a Rouse model with a fractional memory kernel recently proposed by Weber et al. [S.C. Weber, J.A. Theriot, A.J. Spakowitz, Phys. Rev. E 82 (2010) 011913]. Using the Wilemski–Fixman [G. Wilemski, M. Fixman, J. Chem. Phys. 60 (1974) 866] formalism we calculate the looping time for a chain in a viscoelastic fluid where the mean square displacement of the center of mass of the chain scales as t1/2. We observe that the looping time is faster for the chain in a viscoelastic fluid than for a Rouse chain in a Newtonian fluid up to a chain length and above this chain length the trend is reversed. Also no stable scaling of the looping time with the length of the chain seems to exist for the chain in a viscoelastic fluid.
Keywords: Loop closing dynamics; Viscoelastic fluid (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005298
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5326-5331
DOI: 10.1016/j.physa.2012.06.025
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().