Simulation of pedestrian crowds’ evacuation in a huge transit terminal subway station
Wenjun Lei,
Angui Li,
Ran Gao,
Xinpeng Hao and
Baoshun Deng
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 22, 5355-5365
Abstract:
As modernized urban rail transportation, subways are playing an important role in transiting large passenger flows. Passengers are in high density within the subway during rush hours. The casualty and injury will be tremendous if an accident occurs, such as a fire. Hence, enough attention should be paid on pedestrian crowds’ evacuation in a subway. In this paper, simulation of the process of pedestrian crowds’ evacuation from a huge transit terminal subway station is conducted. The evacuation process in different cases is conducted by using an agent-based model. Effects of occupant density, exit width and automatic fare gates on evacuation time are studied in detail. It is found that, with the increase of the occupant density, the evacuation efficiency would decline. There is a linear relationship between occupant density and evacuation time. Different occupant densities correspond to different critical exit widths. However, the existence of the automatic fare gates has little effect on evacuation time and tendency. The current results of this study will be helpful in guiding evacuation designs of huge underground spaces.
Keywords: Pedestrian evacuation; Subway station; Occupant density; Exit width; Evacuation time (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112005377
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:22:p:5355-5365
DOI: 10.1016/j.physa.2012.06.033
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().