Relationships between power-law long-range interactions and fractional mechanics
Ryosuke Ishiwata and
Yūki Sugiyama
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 23, 5827-5838
Abstract:
We investigate the relationships between models of power-law long-range interactions and mechanics based on fractional derivatives. We present the fractional Lagrangian density which gives the Euler–Lagrange equation that serves as the equation of motion for fractional-power-law long-range interactions. We derive this equation by the fractional variational method. In addition, we derive a Noether-like current from the fractional Lagrangian density.
Keywords: Lattice dynamics; Long-range interaction; Fractional calculus; Fractional variational method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112006152
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:23:p:5827-5838
DOI: 10.1016/j.physa.2012.06.055
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().