Maximum entropy and stability of a random process with a 1/f power spectrum under deterministic action
V.P. Koverda and
V.N. Skokov
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 23, 5850-5857
Abstract:
The principle of maximum entropy has been used to analyze the stability of the resulting process observed during the interaction of a random process with a 1/f spectrum and a deterministic action in lumped and distributed systems of nonlinear stochastic differential equations describing the coupled nonequilibrium phase transitions. Under the action of a harmonic force the stable resulting process is divided into two branches depending on the amplitude of the harmonic force. Under the action of exponential relaxation in a lumped system with an increase in the dumping coefficient the power spectrum of the resulting process becomes a spectrum of the Lorentz type.
Keywords: 1/f noise; Stability; Stochastic equations; Maximum entropy principle; Nonequilibrium phase transitions (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112006784
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:23:p:5850-5857
DOI: 10.1016/j.physa.2012.07.016
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().