EconPapers    
Economics at your fingertips  
 

The paradox of group behaviors based on Parrondo’s games

Neng-gang Xie, Jia-yi Guo, Ye Ye, Chao Wang and Lu Wang

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 23, 6146-6155

Abstract: We assume a multi-agent model based on Parrondo’s games. The model consists of game A between individuals and game B. In game A, two behavioral patterns are defined: competition and inaction. A controlled alternation strategy of behavioral pattern that gives a single player the highest return is proposed when game A+B is played randomly. Interesting phenomena can be found in collective games where a large number of individuals choose the behavioral pattern by voting. When game B is the capital-dependent version, the outcome can be better for the players to vote randomly than to vote according to their own capital. An explanation of such counter-intuitive phenomena is given by noting that selfish voting prevents the competition behavior of game A that is essential for the total capital to grow. However, if game B is the history-dependent version, this counter-intuitive phenomenon will not happen. The reason is selfish voting results in the competition behavior of game A, and finally it produces the winning results.

Keywords: Parrondo’s paradox; Majority rule; Behavior; Competition (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112006899
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:23:p:6146-6155

DOI: 10.1016/j.physa.2012.07.024

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:6146-6155