Some properties of generalized Fisher information in the context of nonextensive thermostatistics
J.-F. Bercher
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 15, 3140-3154
Abstract:
We present two extended forms of Fisher information that fit well in the context of nonextensive thermostatistics. We show that there exists an interplay between these generalized Fisher information, the generalized q-Gaussian distributions and the q-entropies. The minimum of the generalized Fisher information among distributions with a fixed moment, or with a fixed q-entropy is attained, in both cases, by a generalized q-Gaussian distribution. This complements the fact that the q-Gaussians maximize the q-entropies subject to a moment constraint, and yields new variational characterizations of the generalizedq-Gaussians. We show that the generalized Fisher information naturally pop up in the expression of the time derivative of the q-entropies, for distributions satisfying a certain nonlinear heat equation. This result includes as a particular case the classical de Bruijn identity. Then we study further properties of the generalized Fisher information and of their minimization. We show that, though non additive, the generalized Fisher information of a combined system is upper bounded. In the case of mixing, we show that the generalized Fisher information is convex for q≥1. Finally, we show that the minimization of the generalized Fisher information subject to moment constraints satisfies a Legendre structure analog to the Legendre structure of thermodynamics.
Keywords: Generalized Fisher information; Generalized Rényi and Tsallis entropies; Generalized q-Gaussian distributions; Information theoretic inequalities (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002951
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:15:p:3140-3154
DOI: 10.1016/j.physa.2013.03.062
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().