Discovering the influential users oriented to viral marketing based on online social networks
Zhiguo Zhu
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 16, 3459-3469
Abstract:
The target of viral marketing on the platform of popular online social networks is to rapidly propagate marketing information at lower cost and increase sales, in which a key problem is how to precisely discover the most influential users in the process of information diffusion. A novel method is proposed in this paper for helping companies to identify such users as seeds to maximize information diffusion in the viral marketing. Firstly, the user trust network oriented to viral marketing and users’ combined interest degree in the network including isolated users are extensively defined. Next, we construct a model considering the time factor to simulate the process of information diffusion in viral marketing and propose a dynamic algorithm description. Finally, experiments are conducted with a real dataset extracted from the famous SNS website Epinions. The experimental results indicate that the proposed algorithm has better scalability and is less time-consuming. Compared with the classical model, the proposed algorithm achieved a better performance than does the classical method on the two aspects of network coverage rate and time-consumption in our four sub-datasets.
Keywords: Complex network; Social network mining; Viral marketing; User trust network; Influential users (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002689
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:16:p:3459-3469
DOI: 10.1016/j.physa.2013.03.035
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().