Measuring the dimension of partially embedded networks
Dániel Kondor,
Péter Mátray,
István Csabai and
Gábor Vattay
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 18, 4160-4171
Abstract:
Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network’s large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P(ρ)∼1/ρ. We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures.
Keywords: Dimension measurement; Complex network; Spectral dimension; Diffusion on networks (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113003592
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:18:p:4160-4171
DOI: 10.1016/j.physa.2013.04.046
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().