Simply conceiving the Arrhenius law and absolute kinetic constants using the geometric distribution
Denis Michel
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 19, 4258-4264
Abstract:
Although first-order rate constants are basic ingredients of physical chemistry, biochemistry and systems modeling, their innermost nature is derived from complex physical chemistry mechanisms. The present study suggests that equivalent conclusions can be more straightly obtained from simple statistics. The different facets of kinetic constants are first classified and clarified with respect to time and energy and the equivalences between traditional flux rate and modern probabilistic modeling are summarized. Then, a naive but rigorous approach is proposed to concretely perceive how the Arrhenius law naturally emerges from the geometric distribution. It appears that (1) the distribution in time of chemical events as well as (2) their mean frequency, are both dictated by randomness only and as such, are accurately described by time-based and spatial exponential processes respectively.
Keywords: Arrhenius law; Rate constant; Bose–Einstein distribution; Geometric law (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113004597
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:19:p:4258-4264
DOI: 10.1016/j.physa.2013.05.036
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().