A lattice gas of prime numbers and the Riemann Hypothesis
Fernando Vericat
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 19, 4516-4522
Abstract:
In recent years, there has been some interest in applying ideas and methods taken from Physics in order to approach several challenging mathematical problems, particularly the Riemann Hypothesis. Most of these kinds of contributions are suggested by some quantum statistical physics problems or by questions originated in chaos theory. In this article, we show that the real part of the non-trivial zeros of the Riemann zeta function extremizes the grand potential corresponding to a simple model of one-dimensional classical lattice gas, the critical point being located at 1/2 as the Riemann Hypothesis claims.
Keywords: Lattice gas; Prime numbers; Variational principle; Riemann Hypothesis (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113004913
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:19:p:4516-4522
DOI: 10.1016/j.physa.2013.05.049
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().