Deterministic self-similar models of complex networks based on very symmetric graphs
Martin Knor and
Riste Škrekovski
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 19, 4629-4637
Abstract:
Using very symmetric graphs we generalize several deterministic self-similar models of complex networks and we calculate the main network parameters of our generalization. More specifically, we calculate the order, size and the degree distribution, and we give an upper bound for the diameter and a lower bound for the clustering coefficient. These results yield conditions under which the network is a self-similar and scale-free small world network. We remark that all these conditions are posed on a small base graph which is used in the construction. As a consequence, we can construct complex networks having prescribed properties. We demonstrate this fact on the clustering coefficient. We propose eight new infinite classes of complex networks. One of these new classes is so rich that it is parametrized by three independent parameters.
Keywords: Complex systems; Small world network; Scale-free network; Deterministic model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113004950
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:19:p:4629-4637
DOI: 10.1016/j.physa.2013.06.001
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().