EconPapers    
Economics at your fingertips  
 

Complex scale-free networks with tunable power-law exponent and clustering

E.R. Colman and G.J. Rodgers

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 21, 5501-5510

Abstract: We introduce a network evolution process motivated by the network of citations in the scientific literature. In each iteration of the process a node is born and directed links are created from the new node to a set of target nodes already in the network. This set includes m “ambassador” nodes and l of each ambassador’s descendants where m and l are random variables selected from any choice of distributions pl and qm. The process mimics the tendency of authors to cite varying numbers of papers included in the bibliographies of the other papers they cite. We show that the degree distributions of the networks generated after a large number of iterations are scale-free and derive an expression for the power-law exponent. In a particular case of the model where the number of ambassadors is always the constant m and the number of selected descendants from each ambassador is the constant l, the power-law exponent is (2l+1)/l. For this example we derive expressions for the degree distribution and clustering coefficient in terms of l and m. We conclude that the proposed model can be tuned to have the same power law exponent and clustering coefficient of a broad range of the scale-free distributions that have been studied empirically.

Keywords: Random networks; Scale-free networks; Citation network modelling; Clustering (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113005815
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:21:p:5501-5510

DOI: 10.1016/j.physa.2013.06.063

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:21:p:5501-5510