Chaos in social learning with multiple true states
Aili Fang,
Lin Wang,
Jiuhua Zhao and
Xiaofan Wang
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 22, 5786-5792
Abstract:
Most existing social learning models assume that there is only one underlying true state. In this work, we consider a social learning model with multiple true states, in which agents in different groups receive different signal sequences generated by their corresponding underlying true states. Each agent updates his belief by combining his rational self-adjustment based on the external signals he received and the influence of his neighbors according to their communication. We observe chaotic oscillation in the belief evolution, which implies that neither true state could be learnt correctly by calculating the largest Lyapunov exponents and Hurst exponents.
Keywords: Social learning; Opinion dynamics; Chaos; Consensus; Multiple true states (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113006523
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:22:p:5786-5792
DOI: 10.1016/j.physa.2013.07.042
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().