Diffusion-limited aggregates grown on nonuniform substrates
V. Cornette,
P.M. Centres,
A.J. Ramirez-Pastor and
F. Nieto
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 23, 5879-5887
Abstract:
In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates are investigated by means of Monte Carlo simulations. We consider a nonuniform substrate as the largest percolation cluster of dropped particles with different structures and forms that occupy more than a single site on the lattice. The aggregates are grown on such clusters, in the range the concentration, p, from the percolation threshold, pc up to the jamming coverage, pj. At the percolation threshold, the aggregates are asymmetrical and the branches are relatively few. However, for larger values of p, the patterns change gradually to a pure DLA. Tiny qualitative differences in this behavior are observed for different k sizes. Correspondingly, the fractal dimension of the aggregates increases as p raises in the same range pc≤p≤pj. This behavior is analyzed and discussed in the framework of the existing theoretical approaches.
Keywords: Adsorption; Fractals; Computer simulations; Monte Carlo method; DLA (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113007486
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:23:p:5879-5887
DOI: 10.1016/j.physa.2013.08.019
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().