A predator–prey model with diseases in both prey and predator
Xubin Gao,
Qiuhui Pan,
Mingfeng He and
Yibin Kang
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 23, 5898-5906
Abstract:
In this paper, we present and analyze a predator–prey model, in which both predator and prey can be infected. Each of the predator and prey is divided into two categories, susceptible and infected. The epidemics cannot be transmitted between prey and predator by predation. The predation ability of susceptible predators is stronger than infected ones. Likewise, it is more difficult to catch a susceptible prey than an infected one. And the diseases cannot be hereditary in both of the predator and prey populations. Based on the assumptions above, we find that there are six equilibrium points in this model. Using the base reproduction number, we discuss the stability of the equilibrium points qualitatively. Then both of the local and global stabilities of the equilibrium points are analyzed quantitatively by mathematical methods. We provide numerical results to discuss some interesting biological cases that our model exhibits. Lastly, we discuss how the infectious rates affect the stability, and how the other parameters work in the five possible cases within this model.
Keywords: Lotka–Volterra equations; Eco-epidemiological model; Predation rate; Basic reproduction number (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113007085
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:23:p:5898-5906
DOI: 10.1016/j.physa.2013.07.077
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().