An integrated Empirical Mode Decomposition and Butterworth filter based vehicle trajectory reconstruction method
Shuoxuan Dong,
Yang Zhou,
Tianyi Chen,
Shen Li,
Qiantong Gao and
Bin Ran
Physica A: Statistical Mechanics and its Applications, 2021, vol. 583, issue C
Abstract:
Trajectory data serving as an essential data-source, has been widely applied in traffic flow analysis, traffic prediction and transportation management. In real situations, trajectory data is often corrupted with noises, which may introduce estimation bias and control inefficiency to intelligent transportation systems. This paper presents a novel trajectory reconstruction method which is generic for both highway and urban arterial trajectories. The reconstruction method establishes an Empirical Mode Decomposition (EMD) based Butterworth low-pass filter framework to filter the noises and simultaneously maintain physical integrity. The two-stage framework firstly applies the EMD to decompose the original trajectories into components, multiple intrinsic mode functions (IMFs), to find out the main components of different temporal-frequency characteristics. Based on that, an optimal Butterworth-filter is applied on the lower order IMFs to filter the acceleration of an unexpected high-frequency range. To test the effectiveness of our proposed method, multiple resource data-sets are applied. As results indicated that our proposed reconstruction method performs well in terms of physical trajectories integrity, high-frequency noise removal, and measurement error rejection with minimum signal distortion. Further, our method efficiently produces speed and acceleration with higher quality compared with the state-of-the-art methods.
Keywords: Empirical Mode Decomposition (EMD); Vehicle trajectory; Signal processing; Butterworth filter (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121005689
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121005689
DOI: 10.1016/j.physa.2021.126295
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().