EconPapers    
Economics at your fingertips  
 

Finding contrasting patterns in rhythmic properties between prose and poetry

Henrique Ferraz de Arruda, Sandro Martinelli Reia, Filipi Nascimento Silva, Diego Raphael Amancio and Luciano da Fontoura Costa

Physica A: Statistical Mechanics and its Applications, 2022, vol. 598, issue C

Abstract: Poetry and prose are written artistic expressions that help us appreciate the reality we live in. Each of these styles has its own set of subjective properties, such as rhyme and rhythm, which are easily caught by a human reader’s eye and ear. With the recent advances in artificial intelligence, the gap between humans and machines may have decreased, and today we observe algorithms mastering tasks that were once exclusively performed by humans. In this paper, we propose a computational method to distinguish between poetry and prose based solely on aural and rhythmic properties. In order to compare prose and poetry rhythms, we represent the rhymes and phonemes as temporal sequences, and thus, we propose a procedure for extracting rhythmic features from these sequences. The performance of this procedure is evaluated by the use of popular machine learning classifiers, and the best accuracy was obtained with a multilayer perceptron neural network. Interestingly, by using an approach based on complex networks to visualize the similarities between the different texts considered, we found that the patterns of poetry vary more than prose. Consequently, a richer and more complex set of rhythmic possibilities tends to be found in that modality.

Keywords: Complex systems; Text analysis; Text classification; Time Series; Machine learning; Neural networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122002965
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002965

DOI: 10.1016/j.physa.2022.127387

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002965