Permanent variational wave functions for bosons
J.M. Zhang,
H.F. Song and
Y. Liu
Physica A: Statistical Mechanics and its Applications, 2022, vol. 599, issue C
Abstract:
We study the performance of permanent states (the bosonic counterpart of the Slater determinant state) as approximating functions for bosons, with the intention to develop variational methods based upon them. For a system of N identical bosons, a permanent state is constructed by taking a set of N arbitrary (not necessarily orthonormal) single-particle orbitals, forming their product and then symmetrizing it. It is found that for the one-dimensional Bose–Hubbard model with the periodic boundary condition and at unit filling, the exact ground state can be very well approximated by a permanent state, in that the permanent state has high overlap (at least 0.96 even for 12 particles and 12 sites) with the exact ground state and can reproduce both the ground state energy and the single-particle correlators to high precision. For a generic model, we have devised a greedy algorithm to find the optimal set of single-particle orbitals to minimize the variational energy or maximize the overlap with a target state. It turns out that quite often the ground state of a bosonic system can be well approximated by a permanent state by all the criteria of energy, overlap, and correlation functions. And even if the error is apparent, it can often be remedied by including more configurations, i.e., by allowing the variational wave function to be a combination of multiple permanent states. The algorithm is used to study the stability of a two-particle system, with great success. All these suggest that permanent states are very effective as variational wave functions for bosonic systems, and hence deserve further studies.
Keywords: Permanent state; Variational wave function; Greedy algorithm; Bose–Hubbard model (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122003028
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003028
DOI: 10.1016/j.physa.2022.127399
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().