A note on a priori forecasting and simplicity bias in time series
Kamaludin Dingle,
Rafiq Kamal and
Boumediene Hamzi
Physica A: Statistical Mechanics and its Applications, 2023, vol. 609, issue C
Abstract:
To what extent can we forecast a time series without fitting to historical data? Can universal patterns of probability help in this task? Deep relations between pattern Kolmogorov complexity and pattern probability have recently been used to make a priori probability predictions in a variety of systems in physics, biology and engineering. Here we study simplicity bias (SB) – an exponential upper bound decay in pattern probability with increasing complexity – in discretised time series extracted from the World Bank Open Data collection. We predict upper bounds on the probability of discretised series patterns, without fitting to trends in the data. Thus we perform a kind of ‘forecasting without training data’, predicting time series shape patterns a priori, but not the actual numerical value of the series. Additionally we make predictions about which of two discretised series is more likely with accuracy of ∼80%, much higher than a 50% baseline rate, just by using the complexity of each series. These results point to a promising perspective on practical time series forecasting and integration with machine learning methods.
Keywords: Time series; Simplicity bias; Kolmogorov complexity; Algorithmic probability; Forecasting (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122008974
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008974
DOI: 10.1016/j.physa.2022.128339
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().