EconPapers    
Economics at your fingertips  
 

Hartree–Fock approximation for bosons with symmetry-adapted variational wave functions

B.R. Que, J.M. Zhang, H.F. Song and Y. Liu

Physica A: Statistical Mechanics and its Applications, 2025, vol. 664, issue C

Abstract: The Hartree–Fock approximation for bosons employs variational wave functions that are a combination of permanents. These are bosonic counterpart of the fermionic Slater determinants, but with the significant distinction that the single-particle orbitals used to construct a permanent can be arbitrary and do not need to be orthogonal to each other. Typically, the variational wave function may break the symmetry of the Hamiltonian, resulting in qualitative and quantitative errors in physical observables. A straightforward method to restore symmetry is projection after variation, where we project the variational wave function onto the desired symmetry sector. However, a more effective strategy is variation after projection, which involves first creating a symmetry-adapted variational wave function and then optimizing its parameters. We have devised a scheme to realize this strategy and have tested it on various models with symmetry groups ranging from Z2, CL, to DL. In all the models and symmetry sectors studied, the variational wave function accurately estimates not only the energy of the lowest eigenstate but also the single-particle correlation function, as it approximate the target eigenstate very well on the wave function level. We have applied this method to study few-body bound states, superfluid fraction, and Yrast lines of some Bose–Hubbard models. This approach should be valuable for studying few-body or mesoscopic bosonic systems.

Keywords: Hartree–Fock; Variational wave function; Permanent state; Variation after projection; Greedy algorithm; Bose–Hubbard model (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125001013
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125001013

DOI: 10.1016/j.physa.2025.130449

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-05
Handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125001013