EconPapers    
Economics at your fingertips  
 

Learning efficient in-store picking strategies to reduce customer encounters in omnichannel retail

Fábio Neves-Moreira and Pedro Amorim

International Journal of Production Economics, 2024, vol. 267, issue C

Abstract: Omnichannel retailers are reinventing stores to meet the growing demand of the online channel. Several retailers now use stores as supporting distribution centers to offer quicker Buy-Online-Pickup-In-Store (BOPS) and Ship-From-Store (SFS) services. They resort to in-store picking to serve online orders using existing assets. However, in-store picking operations require picker carts traveling through store aisles, competing for store space, and possibly harming the offline customer experience. To learn picking policies that acknowledge interactions between pickers and offline customers, we formalize a new problem called Dynamic In-store Picker Routing Problem (diPRP). This problem considers a picker that tries to pick online orders (seeking) while minimizing customer encounters (hiding) – preserving the offline customer experience. We model the problem as a Markov Decision Process (MDP) and solve it using a hybrid solution approach comprising mathematical programming and reinforcement learning components. Computational experiments on synthetic instances suggest that the algorithm converges to efficient policies. We apply our solution approach in the context of a large European retailer to assess the proposed policies regarding the number of orders picked and customers encountered. The learned policies are also tested in six different retail settings, demonstrating the flexibility of the proposed approach. Our work suggests that retailers should be able to scale the in-store picking of online orders without jeopardizing the experience of offline customers. The policies learned using the proposed solution approach reduced the number of customer encounters by up to 50%, compared to policies solely focused on picking orders. Thus, to pursue omnichannel strategies that adequately trade-off operational efficiency and customer experience, retailers cannot rely on actual simplistic picking strategies, such as choosing the shortest possible route.

Keywords: Omnichannel retail; In-store picking; Markov decision process; Reinforcement learning; Real-world application (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527323003067
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:267:y:2024:i:c:s0925527323003067

DOI: 10.1016/j.ijpe.2023.109074

Access Statistics for this article

International Journal of Production Economics is currently edited by Stefan Minner

More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:proeco:v:267:y:2024:i:c:s0925527323003067