EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system

Sammy Houssainy, Mohammad Janbozorgi, Peggy Ip and Pirouz Kavehpour

Renewable Energy, 2018, vol. 115, issue C, 1043-1054

Abstract: The integration of energy storage with renewable sources is imperative as it mitigates the intermittency of the available energy. A novel high temperature hybrid compressed air energy storage (HTH-CAES) system design is presented as a viable solution, which has the benefit of eliminating the necessary combustion and emissions in conventional CAES plants. The hybrid configuration incorporates two stages of heating through separate low-temperature and high temperature thermal energy storage units. A thermodynamic analysis of the HTH-CAES system is presented along with parametric studies, which illustrate the importance of the operating pressure and thermal storage temperature on the performance of the storage system. Realistic isentropic component efficiencies and throttling losses were considered. Additionally, two extreme cavern conditions were analyzed and the cyclic behavior of an adiabatic cavern was investigated. An optimum operating pressure resulting in maximum roundtrip storage efficiency of the hybrid storage system is reported. The hybrid system was found to be more efficient and energy dense as compared with an advanced adiabatic design of the same power output.

Keywords: Hybrid compressed air energy storage; Compressed air energy storage; CAES; Thermal energy storage; Grid storage; Renewable energy storage (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811730900X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:1043-1054

DOI: 10.1016/j.renene.2017.09.038

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1043-1054