Analysis on the cooling and soaking-up performance of wet porous wall for building
Wei Chen,
Shuqiong Zhang and
Yunsong Zhang
Renewable Energy, 2018, vol. 115, issue C, 1249-1259
Abstract:
The porous ceramic pipes with high water soaking-up ability have been combined for passive evaporative cooling wall. The cooling can be supplied due to the occurrence of heat and moisture transfer between the drying air and the outside surfaces of wet porous pipes when the airflow passes through the combining wall, and the lost water is provided by capillary force in the wet porous media, thus, the passive evaporative cooling continues. In the combining wall, the effects of the arrangement of wet porous ceramic pipes in staggered array or in parallel array, the number of pipe rows and the space between the adjacent pipes, as well as the weather conditions on the cooling were investigated. The Darcy law for unsaturated porous media, the momentum balance of a liquid and J(s) function were employed to analyze the water soaking-up performance in the wet porous pipe. The simulations agree with the test results. Besides, more cooling can be supplied from the wet porous ceramic pipes filled with wet sand than that without wet sand in the tests when the airflow passes through the wet porous ceramic. All results provide some guidance for the promotion and application of the passive evaporative porous wall.
Keywords: Wet porous media; Evaporative cooling; Combining wall; Water soaking-up ability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117307796
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:115:y:2018:i:c:p:1249-1259
DOI: 10.1016/j.renene.2017.08.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().