EconPapers    
Economics at your fingertips  
 

An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades

Yibing Wang, Yuanming Xu and Yuyong Lei

Renewable Energy, 2018, vol. 118, issue C, 1015-1023

Abstract: Wind turbines operating in cold and moist climates often suffer from icing events. Ice accretion on wind turbine blades threatens safe operation of wind turbines. Additionally, this phenomenon results in deterioration in power performance, which undoubtedly leads to economic losses. Ultrasonic guided wave anti-/de-icing technology has advantages of low energy consumption, light weight and low cost. However, there are few systematic methods to evaluate the de-icing effect of ultrasonic de-icing system on composite wind turbine blades. In this paper, an integrated and systematic method for the assessment and prediction of ultrasonic de-icing effect for composite wind turbine blades was proposed. Firstly, the interface integrity extent (IIE) and its rate of change were defined to describe the ice de-bonding behavior. Secondly, the adhesive strength of ice on the composite surface was measured, and an ultrasonic de-icing experiment was carried out. Thirdly, the optimal frequency for this de-icing system was calculated, and the stress distribution in the interface was obtained using numerical simulations. Finally, after determining the rate of change of IIE and carrying out the parameter fitting, the method for the assessment and prediction of ultrasonic de-icing effect was established. This method provides guidance for the design of ultrasonic de-icing systems.

Keywords: Wind turbine blades; Cold condition; Ultrasonic de-icing; Composite; Prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117310352
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:118:y:2018:i:c:p:1015-1023

DOI: 10.1016/j.renene.2017.10.074

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:1015-1023