EconPapers    
Economics at your fingertips  
 

The performance and hydrodynamics in unsteady flow of a horizontal axis tidal turbine

Binoe E. Abuan and Robert J. Howell

Renewable Energy, 2019, vol. 133, issue C, 1338-1351

Abstract: This paper presents the effect of idealised unsteady tidal velocities on the performance of a newly-designed Horizontal-Axis Tidal Turbine (HATT) through the use of numerical simulations using Computational Fluid Dynamics (CFD). Simulations are conducted using ANSYS FLUENT implementing the Reynolds-Averaged Navier Stokes (RANS) equations to model the fluid flow problem. A steady flow case is modelling in a 2 m/s stream flow and the resulting performance curve was used as the basis of comparison for the unsteady flow simulations. A decrease in performance was seen for the unsteady flow simulation around peak TSR (TSR = 6) which has a cyclic-averaged coefficient of performance (CP) of 37.50% compared to the steady CP of 39.46%. Similar decreases in performance with unsteady flow was observed away from the peak performance TSR at TSR = 4 and TSR = 8. Furthermore, with unsteady flow that it was found that as the TSR increases, the difference between the cyclic-averaged CP and the steady flow CP drops. The effect of variations in the frequency and amplitude of the unsteady flow showed that a decrease in the cyclic-averaged CP was observed and this performance reduced with increasing frequency and increasing amplitude of unsteady incoming flows. For the cases studied here, unsteady flows are detrimental to the performance of the tidal turbine.

Keywords: Horizontal axis tidal turbine (HATT); Unsteady flow; Hysteresis curve; Coefficient of performance (CP); Computational fluid dynamics (CFD) (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811831108X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:1338-1351

DOI: 10.1016/j.renene.2018.09.045

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:1338-1351