Analyzing the impact of small solar water heating systems on peak demand and on emissions in the Brazilian context
T. Giglio,
V. Santos and
R. Lamberts
Renewable Energy, 2019, vol. 133, issue C, 1404-1413
Abstract:
This study presents a methodology to measure the impact of solar heating systems, on reducing peak demand and on avoided emissions, when applied in low-income housing projects. To this end, a real-time monitoring system was implemented over a year in five clusters representative of a heterogeneous socioeconomic context in new housing subsidized with solar water heating system through the national program “My House, My Life”. The results showed an expressive contribution of the system in reducing the maximum peak demand, obtaining, on average, a 64% reduction in relation to the electric showerhead, predominantly used in the country. The cumulative energy savings of 577 kWh per year resulted in an average of 250 kgCO2 avoided per housing unit. The extrapolation of the data to 224,000 units already delivered by the national program would result in an economy of 56,089 tCO2 per year. This study demonstrates the importance of measurement as a strategic tool in public policies for energy efficiency and in the estimation of emissions associated with greenhouse gases. The solar heating system positions itself as an important energy efficiency policy for Brazil, which minimizes the demand for thermoelectric plants during peak hours and postpones investments with new power generation plants.
Keywords: Solar thermal energy; Measurement; Low-income housing; Peak demand; Greenhouse gas emissions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310541
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:133:y:2019:i:c:p:1404-1413
DOI: 10.1016/j.renene.2018.08.104
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().