PV module temperature distribution with a novel segmented solar cell absorbance model
Jicheng Zhou,
Zhe Zhang and
Haoyun Ke
Renewable Energy, 2019, vol. 134, issue C, 1071-1080
Abstract:
For thermal analysis of photovoltaic modules, single value absorbance model of solar cells has often been used. However, this model can't fully embody obvious selective absorption feature of solar cells. Aimed at this issue, a kind of segmented multi-waveband absorbance model was proposed. By simplifying the standard AM1.5 solar spectrum into 25 different wavebands, corresponding absorbance data were calculated. Combined with finite element method and this segmented absorbance model, temperature simulation of PV module was carried out and the temperature difference between the new model and the single value one used before got to 3.17 K. Then considering less calculated amount and the absorption characteristics, AM1.5 solar spectrum was taken into three wavebands and an alternative three-waveband absorbance model was put forward. The results showed the module temperature difference between the three-waveband absorbance model and multi-waveband absorbance model was only 0.20 K, which indicated the three-waveband absorbance model was more suitable in the PV module temperature simulation.
Keywords: Selective absorption; Photovoltaic module; Finite element simulation; Temperature characteristic (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118310760
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:134:y:2019:i:c:p:1071-1080
DOI: 10.1016/j.renene.2018.09.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().