Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems
Asim Amir,
Aamir Amir,
Hang Seng Che,
Ahmad Elkhateb and
Nasrudin Abd Rahim
Renewable Energy, 2019, vol. 136, issue C, 1147-1163
Abstract:
In this paper, a comparative analysis has been presented on various topologies of isolated and non-isolated DC-DC converters. Here, the major focus remains on transformer-less (TL) DC-DC converters, based on the conventional basic boost converter. In addition, to attain high voltage gain, a classification of non-isolated converters based on extendable and non-extendable design has been presented. For comparative and theoretical analysis, the parameters chosen are the number of components utilized by each converter topology, high voltage gain offered, voltage stresses on each component involved and the efficiency of the high gain topologies. For the converters under discussion, operation under ideal and non-ideal conditions has also been highlighted. Based on this study, authors present a guide for the reader to identify various high voltage gain topologies for photovoltaic (PV) systems.
Keywords: DC-DC converter; High voltage gain techniques (HVGT); Non-isolated transformer less converters (TL); Isolated DC-DC converters (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148118311637
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:136:y:2019:i:c:p:1147-1163
DOI: 10.1016/j.renene.2018.09.089
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().