Comparison of influence of gold contamination on the performances of planar and three dimensional c-Si solar cells
Gulsen Baytemir,
Firat Es and
Rasit Turan
Renewable Energy, 2019, vol. 142, issue C, 393-399
Abstract:
Radial junction solar cell is proposed as an alternative device geometry to planar junction solar cell due to its superior electro-optical performance. In this geometry, densely-packed micropillars enable the collection of minority carriers in the radial direction. Thus, the distance that carriers should travel to reach the p-n junction is shortened, allowing the use of low quality materials with poor carrier lifetime. In this study, we have experimentally studied the advantage of radial junction approach in low quality Si. For this purpose, we fabricated planar and radial junction solar cells using Si wafers with Au impurities. Average efficiency values of 15.74% and 15.66% were obtained for planar and radial cells in uncontaminated samples, respectively, indicating that close efficiency values were obtained when using high-quality materials. However, in the case of contamination, the efficiency of the cells with radial junction degraded less compared to the planar junction with the values of 14.71% and 12.72%, respectively. This is consistent with the expectation that radial junction cells are less sensitive to the quality of the material used. Moreover, these results, together with future structural optimization, lay a solid foundation for lowering fabrication costs without reducing the performance of the solar cell.
Keywords: Radial junction; Solar cell; Metallic contamination; Au impurities; Low lifetime (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119305658
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:142:y:2019:i:c:p:393-399
DOI: 10.1016/j.renene.2019.04.081
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().