EconPapers    
Economics at your fingertips  
 

Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics

Mahboob Alam, Anjireddy Bhavanam, Ashirbad Jana, Jaimin kumar S. Viroja and Nageswara Rao Peela

Renewable Energy, 2020, vol. 149, issue C, 1133-1145

Abstract: The co-pyrolysis of bamboo sawdust (BSD) and linear low-density polyethylene (LLDPE) is studied for the first time using thermogravimetric analysis (TGA) in the temperature range of 30–900 °C at heating rates 5, 10 and 20 °C·min−1. A blend containing 25 wt% BSD and 75 wt% LLDPE (BP1:3) shows the highest synergism as compared to other blends studied. The activation energy drop (36% with respect to biomass) is also highest with this blend. The kinetic parameters are determined using three models based on the isoconversional method: Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), and Friedman (FM) models. The mean values of apparent activation energy for the decomposition of blends (BP3:1 (75 wt% BSD and 25 wt% LLDPE), BP1:1 (50 wt% BSD and 50 wt% LLDPE) and BP1:3) are determined to be 357, 371 and 143 kJ mol−1 from KAS, 368, 400 and 165 kJ mol−1 from OFW and 468, 356 and 255 kJ mol−1 from FM, respectively. The reaction follows a multistep mechanism as depicted by Criado’s master plot. The decomposition of the blend BP1:3 follows a nucleation growth (A2) model in the lower conversion range and diffusion (D2) model in the higher conversion range.

Keywords: Co-pyrolysis kinetics; Bamboo biomass; Linear low-density polyethylene; Synergism; Isoconversional models; Criado’s master plot (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119316003
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:149:y:2020:i:c:p:1133-1145

DOI: 10.1016/j.renene.2019.10.103

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1133-1145