EconPapers    
Economics at your fingertips  
 

Development of thermally enhanced controlled low-strength material incorporating different types of steel-making slag for ground-source heat pump system

Young-sang Kim, Ba Huu Dinh, Tan Manh Do and Gyeong-o Kang

Renewable Energy, 2020, vol. 150, issue C, 116-127

Abstract: This study aims to develop a thermally enhanced controlled low-strength material (CLSM) that functions as a heat transfer medium in the ground source heat pump (GSHP) system based on by-products. Steel-making slags (raw and ground slags) and fly ash were used as main materials of CLSM mixture. The general properties of the CLSM mixture, such as flowability, bleeding properties, initial setting time, unconfined compressive strength (UCS), permeability, thermal conductivity, and environmental impact, were investigated with different steel-making slag contents. Finally, the total construction costs of GSHP with different backfill materials were calculated to assess the benefits of the proposed CLSM mixtures. As the results, the steel-making slag based CLSM exhibited good flowability and bleeding and a significantly enhanced UCS and hydraulic resistance with respect to those of CLSM. However, the thermal conductivity, UCS, and hydraulic resistance tended to decrease when the raw steel-making slag exceeded a certain amount. Furthermore, all proposed CLSM mixtures satisfied the environmental regulations for their safe use in the underground. The cost analysis revealed that proposed CLSM mixtures slag can reduce the total construction costs of GSHP system by up to 41.36%, 0.73%, and 20.44% when compared to those of conventional materials.

Keywords: Thermal conductivity; Steel-making slag; Controlled low-strength material (CLSM); Ground-source heat pump system (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119320014
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:150:y:2020:i:c:p:116-127

DOI: 10.1016/j.renene.2019.12.129

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:116-127