EconPapers    
Economics at your fingertips  
 

The potential for battery energy storage to provide peaking capacity in the United States

Paul Denholm, Jacob Nunemaker, Pieter Gagnon and Wesley Cole

Renewable Energy, 2020, vol. 151, issue C, 1269-1277

Abstract: Providing peaking capacity could be a significant U.S. market for energy storage. Of particular focus are batteries with 4-h duration due to rules in several regions along with these batteries’ potential to achieve life-cycle cost parity with combustion turbines compared to longer-duration batteries. However, whether 4-h energy storage can provide peak capacity depends largely on the shape of electricity demand. Under historical grid conditions, beyond about 28 GW nationally the ability of 4-h batteries to provide peak capacity begins to fall. We find that the addition of renewable generation can significantly increase storage’s potential by changing the shape of net demand patterns; for example, beyond about 10% penetration of solar photovoltaics, the national practical potential for 4-h storage to provide peak capacity doubles. The impact of wind generation is less clear and likely requires more detailed study considering the exchange of wind power across multiple regions.

Keywords: Energy storage; Peaking capacity; Capacity credit; Solar; Wind; Renewable energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148119318117
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:151:y:2020:i:c:p:1269-1277

DOI: 10.1016/j.renene.2019.11.117

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1269-1277