Numerical and experimental investigations of latent thermal energy storage device based on a flat micro-heat pipe array–metal foam composite structure
L. Liang,
Y.H. Diao,
Y.H. Zhao,
Z.Y. Wang and
F.W. Bai
Renewable Energy, 2020, vol. 161, issue C, 1195-1208
Abstract:
Latent heat thermal energy storage (LHTES) is crucial in the application of renewable energy and waste heat recovery. A novel LHTES device with a flat micro-heat pipe array (FMHPA)–metal foam composite structure is designed in this study to obtain excellent heat transfer performance. An evaluation standard called integrated power is proposed to assess and compare the structural advantages of the LHTES device with others. Performances of FMHPA, temperature distribution, effort of inlet temperature and velocity of heat transfer fluid (HTF) are also studied in the experiments. A three-dimensional numerical model is developed to investigate the effort of porosity and pore density of metal foam on the charging process. Results show that the FMHPA–copper foam composite structure improves the performance of the LHTES device. This structure exhibits stronger heat transfer performance than that of other devices. The increasing inlet temperature of HTF has a better promotion effect on power than raising HTF velocity. High porosity is conducive to natural convection but detrimental to heat conduction. High pore density is disadvantageous to natural convection and does not affect heat conduction.
Keywords: Latent heat thermal energy storage; Metal foam; Flat micro-heat pipe array; Evaluation standard; Numerical simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120311095
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:161:y:2020:i:c:p:1195-1208
DOI: 10.1016/j.renene.2020.07.033
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().