EconPapers    
Economics at your fingertips  
 

An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation

Liqun Ma, Zichen Zhang, Linyue Gao, Yang Liu and Hui Hu

Renewable Energy, 2020, vol. 162, issue C, 2344-2360

Abstract: An experimental study was conducted to explore the potentials of using a Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation. The SLIPS was prepared by infusing a lubricant oil into a nanofibrous membrane, which can stick firmly to the surface of a turbine blade model. While the SLIPS was found to effectively suppress impact ice accretion on the blade surface where strong aerodynamic forces are exerted, ice was still found to accrete in the vicinity of the blade stagnation line where aerodynamic forces are at their minimum. A novel hybrid anti-/de-icing strategy to integrate the SLIPS with a minimized leading-edge heating was demonstrated to effectively remove the ice accretion over entire blade surface. An comprehensive experimental study was also performed to evaluate the durability of the SLIPS to resist wearing away of the substrate materials and depletion of the infused lubricant oil due to “rain erosion” effects, in considering its practical usage for wind turbine icing mitigation. It was found that the “rain erosion” effects would induce significant surface wettability degradation, substantial ice adhesion increment and even structural failures to the SLIPS as the duration of the rain erosion testing increases.

Keywords: Wind turbine icing; SLIPS; Impact ice accretion; Icephobic coatings; Anti-/de-icing (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120315792
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:162:y:2020:i:c:p:2344-2360

DOI: 10.1016/j.renene.2020.10.013

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:2344-2360