EconPapers    
Economics at your fingertips  
 

Large-eddy simulation and Co-Design strategy for a drag-type vertical axis hydrokinetic turbine in open channel flows

Jinjin Gao, Han Liu, Jiyong Lee, Yuan Zheng, Michele Guala and Lian Shen

Renewable Energy, 2022, vol. 181, issue C, 1305-1316

Abstract: A drag-type, vertical axis hydrokinetic turbine, partially embedded in a relatively shallow channel streambank, has been introduced to mitigate side wall erosion while producing energy [1,2]. The turbine is deployed at river mid-depth to minimize the interaction with erodible bed and biota, floating debris, ice and logs, and it operates at low tip speed ratio, which is relatively safe for fish. To quantify the turbine performance and wake characteristics and to improve its design, we conduct high fidelity large-eddy simulations (LES) in an open channel flow under different operating conditions and blade geometry. The complex turbine geometry, including the rotor and housing structure, are captured by the immersed boundary method, while the coupled level-set and volume-of-fluid method is used to compute the free surface. The resulting power coefficients at different tip speed ratios are compared against results obtained in a reduced scale prototype experiment, carried out at the St. Anthony Falls Laboratory, for validation. Quantifying the near wake flow structures generated by the turbine and their contribution to the side wall shear stresses, responsible for potential streambank erosion, has become a critical design component. Blade geometry is indeed improved through multiple iterations using the reduced shear stress at the stream bank and the increased power coefficient as a combined metric in our co-design strategy. We believe such a procedure is essential to pursue diffused renewable energy extraction with positive environmental impacts.

Keywords: Large-eddy simulation; Hydrokinetic turbine; Immersed boundary method; River bank protection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121014488
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:181:y:2022:i:c:p:1305-1316

DOI: 10.1016/j.renene.2021.09.119

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:1305-1316