EconPapers    
Economics at your fingertips  
 

Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation

Wencan Zhang, Liansheng Huang, Zhongbo Zhang, Xingyao Li, Ruixin Ma, Yimao Ren and Weixiong Wu

Renewable Energy, 2022, vol. 200, issue C, 1338-1351

Abstract: Thermal runaway propagation of the power battery pack is an essential factor affecting the safety of electric vehicles. The commonly adopted propagation inhibition methods mainly include adding heat insulation materials and enlarging battery spacing, which could cause problematic heat dissipation and lower the system energy density. Herein, an innovative battery thermal management system composed of non-uniform thermal conductivity phase change materials and assisted liquid cooling is proposed. Combining the phase change materials with high and low thermal conductivity balances heat transfer and heat insulation requirements. The cooling performance and the ability of thermal runaway propagation mitigation of the proposed schemes are numerically studied. The results show that the proposed strategy can meet the heat dissipation requirements under normal operation and control the thermal runaway in a safe range by transferring the heat generated from the battery thermal runaway in the set direction. The maximum battery temperature and the temperature difference are 38.1 °C and 2.1 °C, respectively, under 3C discharge. Under thermal runaway conditions, the strategy successful confines the thermal runaway propagation within the middle row. The maximum battery temperature in other rows can be controlled under the irreversible thermal runaway reaction temperature of 200 °C. Further study found that increased thermal conductivity benefits the battery heat dissipation and reduces the risk of thermal runaway. However, it propagates faster and broader once the thermal runaway is triggered. In comparison, the decrease of thermal conductivity is beneficial to the mitigation of propagation but may reduce the overall heat dissipation of the battery module. This study can provide a new way to solve the contradiction between battery temperature control and thermal runaway spread suppression.

Keywords: Lithium-ion battery; Thermal runaway; Inhibition; Phase change material; Non-uniform thermal conductivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122015634
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:200:y:2022:i:c:p:1338-1351

DOI: 10.1016/j.renene.2022.10.070

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1338-1351