Large Eddy Simulation of wind turbine wake interaction in directionally sheared inflows
W. Chanprasert,
R.N. Sharma,
J.E. Cater and
S.E. Norris
Renewable Energy, 2022, vol. 201, issue P1, 1096-1110
Abstract:
A coupled Large Eddy Simulation (LES) and turbine aeroelastic code was used to investigate the impact of directionally sheared inflows on wake interaction in a four-inline turbine array. The wake characteristics in large directional shear inflows were studied to quantify their influence on fatigue loads on the downstream turbines. Coriolis forces were varied by setting the latitude to 0°, 45° and −45°, to produce zero directional shear, the wind veering (Northern hemisphere) and wind backing (Southern hemisphere), respectively, where the hub-height mean wind speed for all cases was controlled to 7 m/s. This was intended to evaluate wind farm turbine operations in the Southern hemisphere which have not been studied before. The results showed that the wake rotations are affected by the lateral velocity of the ambient wind, which causes differences in radial wake expansion and wakes shape twist angle in the Northern and Southern hemispheres. The symmetric wakes in the zero directional shear case led to lower fatigue loads on the blades and rotor shaft compared to skewed wakes. The flapwise blade-root bending moment of downstream turbines at 1P frequency under wind veering (Northern hemisphere) was found to be approximately three times that under wind backing (Southern hemisphere).
Keywords: Large Eddy Simulation; Wind veer; Wind farm; Wakes; Fatigue loads (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122016548
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:201:y:2022:i:p1:p:1096-1110
DOI: 10.1016/j.renene.2022.11.021
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().