EconPapers    
Economics at your fingertips  
 

Multi-objective Bayesian optimisation over sparse subspaces for model predictive control of wind farms

Kiet Tuan Hoang, Sjoerd Boersma, Ali Mesbah and Lars Struen Imsland

Renewable Energy, 2025, vol. 247, issue C

Abstract: As model mismatch (uncertainty) is inevitable, fine-tuning control strategies with closed-loop performance data is critical. This is relevant for model predictive control (MPC) in wind farms (WFs), as inaccurate wake models affect performance. However, challenges such as conflicting control objectives, limited closed-loop data due to expensive experiments, and the high-dimensional design spaces of these MPC formulations make tuning non-trivial. Inspired by the notion of performance-oriented learning, we propose a multi-objective (MO) Bayesian optimisation (BO) framework over sparse subspaces to address these challenges systematically for increased closed-loop MPC performance. To show the efficacy of the BO approach, a simulation case study with a 3x3 WF is investigated where the control objective is to provide secondary frequency regulation while minimising dynamic loading for an MPC with 28 design parameters to auto-tune. Simulations show that the proposed framework achieves a good balance between two conflicting WF control objectives, where dynamic loading is reduced by 51.59% compared to a nominal MPC whose performance is not tuned using closed-loop data while still achieving similar tracking performance. The proposed method is general and can be applied regardless of a closed-loop control goal, WF specifications (complexity, topology, location), or controller formulation for multi-objective constrained control of WFs.

Keywords: Active wind farm power control; High-dimensional Bayesian optimisation; Multi-objective data-driven optimisation; Sparse axis-aligned subspaces for Bayesian optimisation; Model predictive control; Performance-oriented controller auto-tuning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125006500
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:247:y:2025:i:c:s0960148125006500

DOI: 10.1016/j.renene.2025.122988

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:renene:v:247:y:2025:i:c:s0960148125006500