Supercritical CO2 hybrid Brayton–Organic Rankine Cycle integrated with a solar central tower particle receiver: Performance, exergy analysis, and choice of the organic refrigerant
J.A. Moctezuma-Hernandez,
R.P. Merchán and
J.M.M. Roco
Renewable Energy, 2025, vol. 250, issue C
Abstract:
A study of the integration of a supercritical CO2 hybrid Brayton–Organic Rankine Cycle (ORC) with a Concentrated Solar Power (CSP) system using a particle receiver is presented. It focuses on evaluating the energy and exergy performance of the system to improve its efficiency and reduce fuel consumption. The particle receiver uses a mixture of silicon carbide and air as the working fluid, allowing operation at higher temperatures suitable for coupling with the supercritical CO2 Brayton cycle. Detailed thermodynamic models were developed using Mathematica and Engineering Equation Solver (EES) to simulate the behavior of the system under various conditions. The results show that coupling the particle receiver with the hybrid Brayton cycle significantly reduces fuel consumption by 63.2%. The exergy analysis shows that the highest exergy destruction occurs in the heat exchangers of the entire system, indicating potential areas for further efficiency improvements. The study also highlights the critical role in system performance of the ORC working fluid used in the bottoming cycle. Among the fluids tested, R600a was found to be the most effective, providing the highest efficiency under the considered conditions. The results highlight the potential of integrating particle receivers into CSP systems to improve both the energy efficiency and sustainability of power generation, and thus, it represents a promising approach for achieving more effective and sustainable power generation.
Keywords: Supercritical CO2 (sCO2); Hybrid Brayton–Organic Rankine Cycle (ORC); Solar central tower; Silicon carbide (SiC) particle receiver; Exergy analysis; Heat transfer fluid (HTF) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125008936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:250:y:2025:i:c:s0960148125008936
DOI: 10.1016/j.renene.2025.123231
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().