Optimizing dust accumulation quantification on photovoltaic panels using deep learning visual models with hyperparameter optimization
Muhammad Faizan Tahir,
Samyam Lamichhane,
Anthony Tzes,
Yi Fang,
Tarek H.M. El-Fouly and
Shayan Umar
Renewable Energy, 2025, vol. 251, issue C
Abstract:
The increasing integration of solar photovoltaic (PV) systems is driven by their cost-effectiveness and sustainability. Nonetheless, dust accumulation significantly reduces PV performance, especially in arid regions like the UAE. This study investigates multiple deep learning architectures, deep residual neural network (DRNN), vision transformer, ResNet-50, and EfficientNet-B7 for accurate dust quantification on PV panels. A diverse indoor imaging dataset is generated with varying zoom lengths (18–200 mm) and dust concentrations (1g–400g). Preprocessing techniques, such as silver line removal, enhance image quality, while model performance is evaluated using mean absolute error (MAE), mean squared error (MSE), and loop error coefficient. DRNN demonstrates superior accuracy in the indoor imaging dataset and is subsequently evaluated on two additional datasets: outdoor drone-captured images (from 4 to 30m heights) and a combined indoor-outdoor dataset. Its performance is further improved through hyperparameter optimization techniques such as Bayesian optimization, particle swarm optimization, genetic algorithm and hyperband. Bayesian optimization excels in indoor and outdoor datasets, while hyperband efficiently balances resources for the combined dataset, enhancing dust estimation and PV maintenance planning.
Keywords: Dust accumulation; Photovoltaic; Deep learning; Deep residual neural network; Bayesian optimization; Vision transformer (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148125011024
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:251:y:2025:i:c:s0960148125011024
DOI: 10.1016/j.renene.2025.123440
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().