First in situ determination of ground and borehole thermal properties in Latin America
P. Roth,
A. Georgiev,
A. Busso and
E. Barraza
Renewable Energy, 2004, vol. 29, issue 12, 1947-1963
Abstract:
The design of a ground heat exchanger for Underground Thermal Energy Storage (UTES) applications requires, among other parameters, knowledge of the thermal properties of the soil (thermal conductivity, borehole thermal resistance and undisturbed soil temperature). In situ determination of these properties can be done by installing a vertical borehole heat exchanger (BHE) and performing the so-called thermal response test (TRT). The present paper describes the results of a cooperative work between research groups of Chile and Argentina, which led to the first thermal response test performed in Latin America. A setup for implementing the TRT was prepared at the “Solar Energy Laboratory” of the Technical University Federico Santa Maria, Valparaiso, Chile. The test was realized over 9 days (24 June to 3 July 2003) while inlet and outlet fluid temperatures of the BHE and the ambient temperature were measured every minute. A comparison between conventional slope determination method, Geothermal Properties Measurement (GPM) data evaluation software based on numerical solutions to the differential equations governing the heat transfer processes and two variable-parameter fitting was performed in order to calculate the thermal conductivity and borehole thermal resistance. The detailed study of ground properties in different regions of Chile and Latin America (Argentina, Brazil) is a good precondition for future investigation and application of the Borehole Thermal Energy Storage (BTES) technology in the region.
Keywords: Thermal response test; Ground thermal conductivity; Borehole thermal resistance (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014810400093X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:29:y:2004:i:12:p:1947-1963
DOI: 10.1016/j.renene.2004.02.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().