Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system
Atul Sharma,
Lee Dong Won,
D Buddhi and
Jun Un Park
Renewable Energy, 2005, vol. 30, issue 14, 2179-2187
Abstract:
Theoretical investigations of fatty acids as a phase change material (PCM) for energy storage system have been conducted in this study. The selected fatty acids were capric acid, lauric acid, myristic acid, palmitic acid and stearic acid. For the two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Glass, stainless steel, tin, aluminium mixed, aluminium and copper were used as heat exchanger materials in the numerical calculations. Theoretical results show that capric acid was found good compatibility with latent heat storage system. The large value of thermal conductivity of heat exchanger materials did not make significant contribution on the melt fraction.
Keywords: Enthalpy; Heat transfer; Phase change material; Fatty acid (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148105000364
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:30:y:2005:i:14:p:2179-2187
DOI: 10.1016/j.renene.2005.01.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().