EconPapers    
Economics at your fingertips  
 

Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner

Feng Qin, Jiangping Chen, Manqi Lu, Zhijiu Chen, Yimin Zhou and Ke Yang

Renewable Energy, 2007, vol. 32, issue 12, 2034-2052

Abstract: Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8Mn0.2 was developed working at 120–200°C/20–50°C/−10–0°C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van’t-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is −27.1kJ/mol H2 and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3W/(mK), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6W at 150°C/30°C/0°C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance.

Keywords: Metal hydride; Hydrogen; Refrigeration; Exhaust gas; Automobile (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106003247
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:12:p:2034-2052

DOI: 10.1016/j.renene.2006.10.014

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:32:y:2007:i:12:p:2034-2052