Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites
Narayan Ch. Das and
Paul E. Sokol
Renewable Energy, 2010, vol. 35, issue 12, 2683-2688
Abstract:
The nano size zinc oxide (ZnO) was successfully synthesized at low temperature solution method. The structural characterization, size and distribution of synthesized ZnO particles were performed using X-ray diffraction (XRD) and neutron scattering technique. The hybrid polymer-metal oxide bulk heterojunction solar cell has been fabricated by blending of ZnO and regioregular poly(3-hexylthiophene) (P3HT) through solution process and flow coating on the flexible substrate. The decrease in the photoluminescence (PL) emission intensity more than 79% for ZnO:P3HT composites film indicates high charge generation efficiency. The cell shows the Voc and Isc of 0.33 V and 6.5 mA/cm2, respectively. The performance and stability of cell were investigated using UV illumination of white light.
Keywords: Hybrid solar cells; ZnO nanoparticles; Polythiophene; SANS; Stability (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001813
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2683-2688
DOI: 10.1016/j.renene.2010.04.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().