EconPapers    
Economics at your fingertips  
 

Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network

S. Rosiek and F.J. Batlles

Renewable Energy, 2010, vol. 35, issue 12, 2894-2901

Abstract: This paper proposes Artificial Neural Networks (ANN) to model a solar-assisted air-conditioning system installed in the Solar Energy Research Center (CIESOL). This system consists mainly of the single-effect LiBr-H20 absorption chiller fed by water provided from either solar collectors or hot water storage tanks. The present work describes the total solar cooling systems based on absorption chiller and provided only with solar collectors. The experimental data were collected during the cooling period of 2008. ANN was used with the main goal of predicting the efficiency of the chiller and global system using the lowest number of input variables. The configuration 7-8-4 (7 inputs, 8 hidden and 4 output neurons) was found to be the optimal topology. The results demonstrate the accuracy ANN’s predictions with a Root Mean Square Error (RMSE) of less than 1.9% and practically null deviation, which can be considered very satisfactory.

Keywords: Absorption chiller; Water-lithium bromide; Artificial neural network (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001850
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2894-2901

DOI: 10.1016/j.renene.2010.04.018

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2894-2901